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Forecasting Obsolescence Risk and Product Life
Cycle With Machine Learning

Connor Jennings, Student Member, IEEE, Dazhong Wu, and Janis Terpenny

Abstract— Rapid changes in technology have led to an increas-
ingly fast pace of product introductions. For long-life systems
(e.g., planes, ships, and nuclear power plants), rapid changes
help sustain useful life, but at the same time, present significant
challenges associated with obsolescence management. Over the
years, many approaches for forecasting obsolescence risk and
product life cycle have been developed. However, gathering
inputs required for forecasting is often subjective and laborious,
causing inconsistencies in predictions. To address these issues, the
objective of this research is to develop a machine learning-based
methodology capable of forecasting obsolescence risk and product
life cycle accurately while minimizing maintenance and upkeep of
the forecasting system. Specifically, this new methodology enables
prediction of both the obsolescence risk level and the date when
a part becomes obsolete. A case study of the cell phone market
is presented to demonstrate the effectiveness and efficiency of
the new approach. Results have shown that machine learning
algorithms (i.e., random forest, artificial neural networks, and
support vector machines) can classify parts as active or obsolete
with over 98% accuracy and predict obsolescence dates within
a few months.

Index Terms— Diminishing manufacturing sources and mater-
ial shortages, electronic parts, life cycle stages, machine learning,
obsolescence, sustainment.

I. INTRODUCTION

OBSOLESCENCE occurs in almost all industry sectors,
generally due to the availability of alternatives that are

more cost-effective, those that can achieve better performance
and quality, or some combination of the two. Currently,
3% of the world’s electronic products become obsolete
monthly due to technical, functional, legal, and style obsoles-
cence [1], [2]. For example, technical obsolescence occurs in
the music industry. Music was first recorded to vinyl, and then
made portable by eight-track tapes and then cassette tapes.
Since the 1980s, compact disks have superseded cassettes.
Recently, the music industry is observing technology shift
from MP3 to music streaming services. Each societal shift
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causes immense amounts of obsolete inventory from audio
players to physical music vessels.

Over the past few years, the flow of electronic components
and software into traditionally non-electronic products has
increased the problem of component and software obsoles-
cence in more industries. As obsolescence grows, the need
for proactive management increases because reactive strategies
are often more expensive than proactive strategies. Reactive
strategies require additional resources (i.e., time and materials)
to solve and can contribute to further delays that impact
customer satisfaction. Proactive strategies allow firms to have
more time to plan and react with an effective and low-cost
approach [3]–[6]. The cornerstone of a viable proactive obso-
lescence management strategy is an obsolescence forecasting
methodology.

In this paper, two machine learning-based methodologies
that address obsolescence risk and life cycle forecasting are
presented. Specifically, one method addresses obsolescence
risk forecasting; the other method addresses life cycle fore-
casting. Obsolescence risk forecasting and life cycle forecast-
ing are both umbrella terms under obsolescence forecasting.
However, obsolescence risk forecasting refers to a process that
predicts the probability that a given part will become obsolete.
Life cycle forecasting refers to a process that predicts the
length of time during which the product will be procurable.
Both approaches can be adapted to forecast obsolescence in
scenarios where obsolescence is present. The two techniques
integrate machine learning to adapt over time to make forecasts
more accurate as more obsolete instances are observed by the
model. Specifically, the objective of this paper is to answer
the following questions.

1) How can large-scale product obsolescence forecasting
be addressed using machine learning?

2) Does machine learning-based obsolescence forecasting
offer improvement over current obsolescence forecasting
methods?

The contribution of this paper is to introduce a novel
data-driven approach for large-scale obsolescence forecast-
ing using machine learning. To demonstrate the approach,
a real-world application example is presented using three
machine-learning algorithms. These machine-learning algo-
rithms are applied to a large data set of over 7000 unique cell
phone models with known in-production or out-of-production
statuses.

The remainder of this paper is organized as follows. In
Section II, a brief overview of existing obsolescence methods
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adopted by industry is presented. This includes: 1) current
life cycle forecasting methods; 2) current obsolescence risk
forecasting methods; 3) difficulties experienced in industry;
and 4) current commercial obsolescence forecasting methods.
In Section III, the methodologies of life cycle forecasting using
machine learning (LCML) and obsolescence risk forecasting
using machine learning (ORML) are presented. Section IV
provides a case study of LCML and ORML that is used to
predict obsolescence in the cell phone market. Section V dis-
cusses the limitations of the LCML and ORML frameworks.
Section VI provides conclusions that include a discussion of
research contribution and future work.

II. OBSOLESCENCE

Obsolescence can have an immensely negative effect on
many industries, the ramifications of which have generated
a large body of research around obsolescence-related decision
making and more generally, around studying products through
the product’s life cycle. To address the economic aspect of
obsolescence, cost minimization models are presented for both
the product design side and the supply chain management
side of obsolescence management [7]–[9]. Extensive work
has also been conducted on the organization of obsolescence
information [10]–[12]. The organization of information allows
one to make more accurate decisions during the design phase
of a product’s life cycle.

Obsolescence management and decision-making methods
have three groups: 1) short-term reactive; 2) long-term reac-
tive; and 3) proactive. The most common short-term reactive
obsolescence resolution strategies include lifetime buy, last-
time buy, aftermarket sources, and identification of alternative
or substitute parts, emulated parts, and salvaged parts [3], [13].
However, these strategies are only temporary and can fail if
the organization runs out of ways to procure the required parts.
More sustainable long-term alternatives are design refresh and
redesign. But these alternatives usually require large design
projects and can carry costly budgets. In a 2006 report, the
U.S. Department of Defense (DoD) estimated the cost of
obsolescence and obsolescence mitigation for the government
to be U.S. $10 billion annually for the U.S. government [14].
The estimates in the private sector could be higher because
smaller firms cannot afford the systems DoD uses to track
and forecast obsolescence.

Obsolescence forecasting can be categorized according to
two groups, obsolescence risk forecasting and life cycle fore-
casting. Obsolescence risk forecasting generates a probability
that a part or other element may fall victim to obsoles-
cence [15]–[18]. Life cycle forecasting estimates the time from
creation to obsolescence of the part or element [2], [19], [20].
Using the creation date and life cycle forecast, analysts can
predict a date range when a part or element will become
obsolete [2], [13], [19], [20].

Obsolescence forecasting is important in both the design
phase of the product and the manufacturing life cycle of
the product. It is estimated that 60%–70% of cost during a
product’s life cycle is caused by decisions made in the design
phase [21]. Understanding the risk level for each component

Fig. 1. Product life cycle model.

in proposed bills of materials developed in the design phase
can help designers determine designs that have lower risk
of component obsolescence and therefore reduce the lifetime
cost impact. In addition, obsolescence forecasting can be
used throughout a product’s life cycle to analyze predicted
component obsolescence dates and find the optimal time to
administer a product redesign that will remove the maximum
number of obsolete or high obsolescence risk parts.

A. Life Cycle Forecasting

The key benefit of life cycle forecasting is that it allows
analysts to predict a range of dates when the part will become
obsolete [2]. These dates enable project managers to set time
frames for the completion of obsolescence mitigation projects;
aid designers in determining when redesigns are needed; and
enable managers to more effectively manage inventory. All of
these effects of life cycle forecasting reduce the impacts of
obsolescence [2].

Currently, most life cycle forecasting methods are developed
based on the product life cycle model. As shown in Fig. 1,
the model includes six stages: introduction, growth, maturity,
saturation, decline, and phase out. When sales fall enough to
be considered in phase out, many firms will discontinue the
product, rendering it unsupported and obsolete.

Solomon et al. [20] introduced the first obsolescence fore-
casting method that identified characteristics to estimate the
life stage of a product. Characteristics such as sales, price,
usage, part modification, number of competitors, and manu-
facturer profits, when combined, could estimate the stage and
whether or not the product is close to phase out. However, the
lack of a forecast indicating obsolescence in the immediate
future is not useful for predictions of when, or if, a part might
become obsolete in the long term [20]. One current method
for life cycle forecasting utilizes data mining of sales data of
parts or other elements and then fits a Gaussian trend curve
to predict future sales over time [2], [19]. Using the predicted
sales trend curve of a part, peak sales are estimated by the
mean (denoted as μ in Fig. 2). Stages are then estimated
based upon standard deviations (denoted as σ in Fig. 2)
from the mean. Obsolescence forecasting predicts the zone of
obsolescence. This zone is given between +2.5σ and +3.5σ
and gives the lower and upper bound time intervals for when
a part or element will become obsolete [19].

A potential shortcoming of this approach, however, is the
assumption of normality of the sales cycle [19]. Another
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Fig. 2. Life cycle forecast using Gaussian trend curve.

method involves organizing part information sales, price,
usage, part modification, number of competitors, and manu-
facturer profits into an ontology to better estimate the current
product life cycle stage of the part and then fit a trend line
using current sales to predict future sales [21]–[23]. The zone
of obsolescence is estimated using the predicted future sales,
but does not assume normality since the factors utilized in the
Gaussian trend curve [25] are used to estimate the stage, not
the curve shape.

Currently, most life cycle forecasting methods in the liter-
ature are built upon the concept of product life cycle model.
This method involves data mining parts information databases
for introduction dates and procurement lifetimes to create a
function with the input being the introduction date and the
output being the estimated life cycle [13]. The advantage of
this method is the lack of reliance on sales data, the ability
to create confidence limits on predictions, and the simplicity
of a model with one input and one output [13]. However,
this does not take into account the specifications of each
individual part. As a result, the model could be skewed. For
example, two manufacturers with two different design styles
both make similar products. The first manufacturer creates a
well-designed product and predicts that the specifications will
hold in the market for five years. The second manufacturer
does not conduct market research and introduces a new product
every year to keep specifications up to market standards. Over
the next five years, the first company will have one long life
data point and the second company will have five short life
data points; this will skew the model into predicting that the
approximate life cycle is shorter than it actually is because the
model does not take into account specifications.

B. Obsolescence Risk Forecasting
Another common method used for predicting obsolescence

is obsolescence risk forecasting. Obsolescence risk forecasting
involves creating a scale to indicate the levels of the chance
of a part or element becoming obsolete. The most common of
these scales is to use probability of obsolescence [15]–[18].
These scales, like product life cycle stage prediction, use a
combination of key characteristics to identify where the part
falls on a scale.

Currently, two simple models exist for obsolescence risk
forecasting; both use high, medium, and low ratings for key
obsolescence factors that can identify the risk level of a part
becoming obsolete [15], [16], [18]. Rojo et al. [18] con-
ducted a survey of current obsolescence analysts and created
an obsolescence risk forecasting best practice that looks at

numbers of manufacturers, years to end of life, stock available
versus consumption rate, and operational impact criticality as
key indicators for potential parts with high obsolescence risk.
Josias and Terpenny [16] also created a risk index to measure
obsolescence risk. The key metrics identified in this technique
are manufacturers’ market share, number of manufacturers,
life cycle stage, and company’s risk level [16]. The weights
for each metric can be altered based on changes from industry
to industry. However, this output metric is not a percentage,
but rather a scale from zero to three (zero being no risk of
obsolescence and three being high risk).

Another approach introduced by van Jaarsveld uses demand
data to estimate the risk of obsolescence. The method man-
ually groups similar parts and watches the demand over
time [17]. A formula is given to measure how a drop in
demand increases the risk of obsolescence [17]. However,
this method cannot predict very far into the future because
it does not attempt to forecast out demand, which causes the
obsolescence risk to be reactive.

C. Obsolescence Forecasting Scalability
For a method to be scalable, the framework must have the

ability to adjust the capacity of predictions with minimal cost
in minimal time over a large capacity range [22]. To achieve
scalability in industry, obsolescence forecasting methods must
meet the following requirements.

1) Do Not Require Frequent (Quarterly or More Often)
Collection of Data for All Parts: The reason for this require-
ment is that many methods involve tracking sales data of
products to estimate where the product is in the sales
cycle [2], [19], [20]. A relatively small bill of material with
1000 parts would require a worker to find quarterly sales
for 1000 parts and input them every quarter (or even more
frequently). Companies have built Web scrapers to aggre-
gate these data automatically, like specifications and product
change notifications, but many manufacturers do not publish
individual component sales publicly on the Web. Large com-
mercial parts databases have contracts with manufacturers and
distributors to gain access to sales data, but many companies
not solely dedicated to aggregating component information
have difficulty obtaining this information. The lack of ability
of most companies to gather sales data makes forecasting
methods requiring sales of individual parts extremely difficult
to scale.

2) Remove All Human Bias About Markets: Asking humans
to input opinion on every part leads to methods that are
impractical for industry. In addition, finding and interview-
ing subject matter experts for long periods of time can be
costly. Also, there may exist biases inherent in subject matter
experts when estimating obsolescence risk within their field
of expertise. These biases are largely due to experts being so
ingrained in the traditions of their field that new products or
skills can seem inferior when in fact they may supersede the
expert’s traditional preferences.

3) Account for Multifeature Products in the Obsolescence
Forecasting Methodology: Methods have been developed to
predict obsolescence of single-feature products [2], [19], for
example, flash drives. The flash drive may vary slightly in
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size and color but only has one key feature, memory. When a
flash drive does not have sufficient memory to compete in the
flash drive market, companies phase out that memory size in
preference for ones with larger memory. Creating models for
single-feature products like memory is straightforward because
the part has only one variable that only causes one type of
obsolescence, technical. However, multifeature products, for
example, a car, can have many causes for becoming obsolete,
and this makes it much more challenging to model. Some
examples might include: 1) style obsolescence that comes from
changes such as eliminating cigarette lighters, ashtrays, and
the removal of wood paneling from the sides of cars; 2) the
functional obsolescence of cassettes, and now even CD players
for MP3 ports or Bluetooth; and 3) the technical obsolescence
of drum brakes giving way to safer and longer running disk
brakes. With these multiple obsolescence factors, many of
the current forecasting models fall apart. Any obsolescence
forecasting method that does not meet the three requirements
described above will most likely develop problems when
trying to scale to meet the needs of industry.

Table I provides an overview of obsolescence forecasting
methods that have been published in the last 15 years. Each
method is characterized according to the type of obsolescence
forecasting and whether it meets each of the scalability factors.
Ideally, methods that do not require sales data or human
input but should be capable of forecasting obsolescence for
multifeature products. These characteristics are also indicated
in Table I for each method. As shown, Sandborn et al.’s [13]
is the only current method that does not require sales data
or human inputs but does consider multifeature products.
It creates a prediction model to predict lifespans of current
products based on the past lifespans of similar parts, taking
into account life cycle differences between manufacturers.
However, this approach does not take into account the feature
specifications of the part when predicting obsolescence dates.
For example, one would expect that if two similar products
are introduced into a market at the same time, and one is
far more technically superior, the technically superior product
would have a longer life cycle since it would be technically
competitive in the market for a longer period. Without taking
this technical progression into account, one of the key causes
of technical obsolescence could be overlooked, leading to a
potential decrease in accuracy of the model.

D. Commercial Obsolescence Forecasting Services
Because obsolescence forecasting can realize enormous cost

savings for organizations, there are several companies that
have emerged in recent years offering obsolescence forecasting
and management as a service. Currently, some of the leading
obsolescence forecasting and management companies include
SiliconExpert, IHS, Total Parts Plus, AVCOM, and QTEC
Solutions [23]–[27]. These companies focus on electronic
components because of the high rate of obsolescence and
have databases with information on millions of electronic parts
such as part ID, specifications, and certification standards. The
commercial forecasting services can be sorted into life cycle
and obsolescence risk. Currently, SiliconExpert, Total Parts
Plus, AVCOM, and QTEC Solutions offer life cycle forecasts,

Fig. 3. Supervised learning process.

and IHS offers an obsolescence risk forecasting solution.
However, none of these services offer both obsolescence risk
and life cycle forecasting.

III. METHODOLOGY

In this section, two separate obsolescence forecast-
ing methodologies and frameworks are introduced. Both
approaches apply machine learning to improve accuracy
and maintainability over other existing methods. The two
approaches are differentiated by the two major outputs of
the model. The first outputs the risk level that a product or
component will become obsolete. This is termed ORML. The
second method outputs an estimation of the date the product
or component will become obsolete and is termed LCML.

Machine learning has gained popularity in many applica-
tion fields because it can process large data sets with many
variables. The applications of machine learning range from
creating better recommendation systems on Netflix to facial
recognition in pictures to cancer prediction and progno-
sis [29]–[31]. Specifically, in the field of design, machine
learning has been used to gather information and develop con-
clusions from previously underutilized sources. For example,
public online customer reviews of products are mined to better
understand how customers feel about individual product fea-
tures [32]. The results of these analyses can be used to improve
products during redesign and in new product development
by understanding customers’ preferences in products. Another
example of data mining and machine learning in design is the
analysis of social media for feedback on products. Current
work has shown that by using social media data, machine
learning can predict sales of product and levels of market
adoption [33]. Understanding the market adoption of features
can indicate if the feature is a passing or a permanent trend.

Both ORML and LCML use a subset of machine learning
called supervised learning. Supervised learning creates predic-
tive models based on data with known labels. These predictive
models are used to predict labels of new and unknown data.
A common introduction problem in supervised learning is
to create a model to predict whether an individual will go
outside or stay inside based on the weather. Two data sets
are presented and follow the process shown in Fig. 3. The
first data set contains the temperature, humidity, and sunniness
for each day and whether the subject stayed inside or went
outside. This data set is the training data set because a
predictive model with output, stay inside or go outside, will
be trained using these data. The training data set is fed into a
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TABLE I

LIST OF ALL METHODOLOGIES AND SCALABILITY FACTORS

machine-learning algorithm, which creates a predictive model
that will most accurately classify the known label based on
the known weather information. The new model can also be
fed weather information where the label is unknown. The
model will predict the label with the highest likelihood of
occurring. The unknown data set is also called the test set
because it will be used to test the accuracy of the predictive
model. For the stay-inside-or-go-outside prediction model and
all supervised learning models, the more the data with known
labels submitted to the machine-learning algorithm, the more
effective the predictive model. This means supervised machine
learning is a strong fit for any problem where data continually
flow in and can make the predictions more accurate. With
prediction of product obsolescence, the stream of newly cre-
ated and discontinued products allows the predictive models
created using ORML and LCML to gain accuracy over time.

Supervised machine learning was chosen over unsupervised
machine learning because the latter does not have a known
data set. Unsupervised machine learning does not have a
label to predict, but rather uses algorithms to fix clusters and
patterns in the data. Similar methods could be advantageous
to identifying groups of comparable products for product
redesign or for cost reduction in the design phase. However,
due to unsupervised machine learning finding groupings that
are not explicitly obsolete versus active, supervised learning
was chosen over unsupervised learning for this obsolescence
forecasting framework.

In addition, machine learning models are not deterministic
models. Many algorithms use randomization to split variables
and evaluate the outcome. A byproduct of this trait is that the
predictive models will vary slightly each time the algorithm is
implemented. Even with these slight variations, machine learn-
ing models are highly effective and used in many predictive
applications.

A. Obsolescence Risk Forecasting Using Machine Learning

The forecasting methods introduced and demonstrated
in this paper are based on the concept that parts become

Fig. 4. Outputs of ORML.

obsolete because other products in the market have a superior
combination of features, software, and/or other added value.
The ORML framework, like the weather example, is shown
information and attempts to classify the part with the correct
label. However, instead of weather information, the technical
specifications of current active and obsolete parts are fed into
algorithms to create the predictive models. In Fig. 3, after
the predictive model is created, the technical specifications
of parts with unknown obsolescence statuses are structured
in the same way as that for the known parts and input to
the predictive model. The model outputs the probability that
the part is classified with the label active or obsolete. The
probability that the part is obsolete can be used to show the
obsolescence risk level.

Fig. 4 shows the output from the ORML method. Product A
shows a product with a 100% chance of the part being active.
Product B demonstrates a mixed prediction with between a
60% chance of being active and a 40% chance of being
obsolete. Product C shows the prediction of a product with
a 100% chance of being obsolete.

One application of this output is to predict the obsolescence
risk level for every component in two competing designs or
subassemblies and then create a composite obsolescence risk
level for each design using a combination of the components’
risks. The new composite risk level could be used as an
attribute in the process for selecting a final design.
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B. Life Cycle Forecasting Using Machine Learning

The LCML framework is built on the same principle that
parts become obsolete because other products in the market
have a superior combination of features, software, and/or other
added value, the difference being what the frameworks are
predicting. Where ORML predicts the label active or obsolete,
LCML uses regression to predict a numeric value of when the
product/component will stop being manufactured.

LCML’s ability to estimate a date of obsolescence is a
highly useful metric. LCML will give designers and supply
chain professionals a more effective way of predicting the
length of time to complete redesign or find a substitute supplier
or component. Understanding when each component on a bill
of materials will become obsolete will allow designers the
ability not only to provide time constraints on projects, but
also more effectively time redesign projects to maximize the
number of high risk components removed from the assembly.

The combinations of the ORML and LCML outputs in
analyses have numerous applications in business decision mak-
ing processes. Current commercial obsolescence forecasting
methods and those in the literature only predict obsolescence
risk or product life cycle. Since the ORML and LCML models
both use product specifications as input and the same machine-
learning algorithms to build the model, the only additional
work needed to switch between predicting risk versus life cycle
is changing the output in the training data. This is just one of
the reasons a machine learning-based obsolescence forecasting
method is superior. Currently, it is the only method that readily
provides obsolescence risk and product life cycle, essential to
improve accuracy.

IV. CASE STUDY

The case study serves to demonstrate the accuracy and
scalability of ORML and LCML as methods to forecast
obsolescence. The cell phone market was chosen for the case
study due to availability of data and the ease it provides in
understanding the product and specifications. Although the
case study is a consumer product, the ORML and LCML
prediction frameworks can be utilized to predict component
obsolescence found in larger complex systems.

The case data contain over 7000 unique models of cel-
lular phones with known procurable or discontinued status,
release year and quarter, and other technical specifications.
The specifications include weight (g), screen size (in), screen
resolution (pixels), talk time on one battery (min), primary
and secondary camera size (MP), type of Web browser, and
if the phone has the following: 3.5-mm headphone jack,
Bluetooth, e-mail, push e-mail, radio, SMS, MMS, thread
text messaging, GPS, vibration alerts, or a physical keyboard.
The data set included 4030 procurable and 3021 discontinued
phones. However, the data set only included 38 obsolescence
dates. This means that the ORML portion of the case study
had 7051 unique cell phone models while the LCML had 38.
Although the data sets differ in size, each data set is suitable
in size to demonstrate the ORML and LCML frameworks.

The data were collected from one of the most popular cell
phone forums, GSM Arena, using a Web scraper. The original

TABLE II

NEURAL NETWORKS ORML CONFUSION MATRIX FOR CELL PHONES

TABLE III

SVM ORML CONFUSION MATRIX FOR CELL PHONES

data set, and the code for the Web scraper, and machine learn-
ing models created in this case study can be downloaded from
connorj.github.io/research. GSM Arena is an online forum
that provides detailed and accurate information about mobile
phones and associated features. For this reason, the data set can
have missing values and even miss reported information. Even
with these shortfalls with the data set, this more accurately
represents data collected in industry and demonstrates the
robustness of the ORML and LCML frameworks.

After formatting the data, the data set was split into two
random groups. The first group represents 2/3 of the data
set and is called the training data set. The training set is
the data set used to create the prediction model. The second
is the test set and represents the other 1/3. Although all
the data sets are known in this case study, the test set will
be put through the predictive model, and accuracy will be
determined by comparing actuals obsolescence statuses and
obsolescence date with the one predicted by the model. This
practice is known as validation and is a best practice for
model creation and evaluation because the data used to create
a prediction model are never used to validate its accuracy
[34]. Currently, the majority of the obsolescence forecasting
models in the literature estimate model accuracy by using
the same data used to create the model. The data set was
split into a 1/3 test set and a 2/3 training set for an initial
analysis for accuracy using confusion matrices. A more in-
depth analysis was conducted where the ratio of training and
test set sizes was changed and the accuracy was assessed
(Tables V and VII) [35].

The next step in the case study was to run the training
data set through a machine-learning algorithm to create a
predictive model. Machine learning has many algorithms
and infinitely more if counting all the slight variations that
can be done to increase accuracy. Three machine-learning
algorithms, artificial neural networks (ANNs), support vector
machines (SVMs), and random forest (RF) will be applied
to this case study [36]–[38]. Decision trees and SVMs
were ranked first and third, respectively, on the list of top
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TABLE IV

RF ORML CONFUSION MATRIX FOR CELL PHONES

ten algorithms in data mining [39]. However, standard deci-
sion trees are often inaccurate and overfit data sets [41].
RF, an aggregation of many decision trees, averages the trees
with the intention of lowering the variance of the predic-
tion [41]. For this reason, RF was selected over standard
decision trees. The algorithm listed second, K-means, is an
unsupervised clustering method and would group similar prod-
ucts together rather than forecast an output. For this reason,
K-means is not a possible alternative for an algorithm to
be used for either ORML or LCML and therefore was not
included in this case study. Although ANNs were not on this
top 10 list, they were selected based on wide usage in deep
learning, a subset of machine learning. Deep learning looks at
the complex relationships between inputs in an effort to have
a greater understanding of combined relationships with the
output [41]. In the final step, once the algorithm con-
structs a predictive model, each part or element from the
unknown data set is run through the model and receives a
predicted label.

A. Results of Obsolescence Risk Forecasting
The accuracy of the ORML model is represented in a

confusion matrix. The confusion matrix (Tables II–IV) shows
how many cell phones were classified correctly versus those
classified incorrectly. Numbers in the (available, available) and
(discontinued, discontinued) cells are correctly classified and
all other cells are misclassified.

The first algorithm used was ANN. The neural networks
classification was done in R 3.0.2 using the package caret [40].
All the ANNs in this study were constructed with two hid-
den layers. The probability of each part being available or
discontinued was output, and the highest probability label of
available or discontinued was assigned. The actual statuses
were compared to the predicted values, and a confusion
matrix was developed (Table II). The model correctly predicted
91.66% of cell phones with the correct label in the test data set.

The next algorithm applied was SVM. The SVM utilized the
SVM classification function from the package e1071 [41] in
R 3.0.2 and a radial basis kernel was selected. The algorithm
was implemented on the training data set that contained 66.6%
of the total data. The prediction model then classified the
remaining 33.3% of phones not used in the model creation.
The actual statuses and the predicted statuses were compared,
and the confusion matrix in Table III was created. The SVM
model has a model accuracy of 92.4%.

The last algorithm applied was RF. The model was imple-
mented in R 3.0.2 using the package randomForest [42]. The
randomForest function was set to have 500 trees for all RFs in
this case study. The model was trained with a 66.6% training

Fig. 5. Overall average evaluation speed by the training data set fraction for
ORML.

set and was tested with 33.3%. The predicted test set and the
actual statuses are compared in Table IV. The model received
an accuracy of 92.56%. This was the highest of all three
algorithms.

For Tables II–IV, the training size was held constant
at 66.6%. Table V illustrates how changing the percent of
instances from the data set used to create the model affects
accuracy. ANN and SVM preform at about the same accuracy
for every training size, while RF always performs at a higher
accuracy.

The algorithms were compared using the prediction model
creation time for each of the 50%–100% training sets used in
Table V. Ten predictive models were created for each training
size, and the average time was plotted (Fig. 5). All the
algorithms increased in time at a near constant rate. ANN
is the fastest algorithm, followed by SVM, which is followed
by RF.

Although the speed of creating these predictive models
is relatively small (<1 min per model), it is important to
remember that this case study is only creating prediction
models for one product type. If ORML was scaled to create a
prediction model for each component on a 10 000 component
bill of materials, these relatively small differences in times
would compound rapidly.

Four characteristics, identified in [43], were measured
to rank the algorithms. The first two characteristics were
performance-based: accuracy and evaluation speed. The rank-
ings of the algorithms in Table VI for the first two attributes
were determined by best model accuracy and by average
time to complete the ten simulations of each of the six
different training set sizes. The second two characteristics were
usability-based: interpretability and maintainability/flexibility.
Interpretability is defined as the ability for analysts to com-
prehend the model and analyze the output. Maintainabil-
ity/flexibility represents the models’ ability to adapt over time
and how much work is required to keep the model running.

RF was ranked best (first) in interpretability due to the visual
nature of decision trees and the ability of analysts to follow
the flow of the tree to understand the steps in the classification
model. SVM was ranked second because, while the concept
of creating a plane to separate the available and discontinued
groups is easy to understand, due to the high dimensionality
of the data, there is no obvious visual representation of
this model. Last, neural networks were ranked third out of
the three because of the complexity of the trained network
and the black-box nature of this classification method.

Maintaining machine-learning models requires regular
inputs of data to maintain the accuracy of the model because
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TABLE V

AVERAGE ACCURACY OF PREDICTIONS BY TRAINING SIZE FOR ORML

TABLE VI

SUMMARY OF MODEL PREFERENCE RANKING FOR ORML

both neural networks and SVMs require only numeric vari-
ables; all variables must be converted to numeric. Creating
numeric indexes can be time-consuming and will slow down
the data entry process. For this reason, RF was ranked number
one. In Table VI, as the training set size decreased, the
accuracy of the neural network test set dropped faster than that
of the SVM test set. While fewer data points were required,
the neural network was not flexible and could not perform
as well as the SVM, making SVM ranked second and neural
networks third.

Overall, RF was ranked first in all attributes except speed
where it was ranked third. For this reason, RF is the most
appropriate algorithm for ORML in the cell phone market.
This result can be verified by the accuracy of the RF model
where 100% of the data set was used to create and test the
model. RF was able to correctly classify 98.3% of the cell
phones.

B. Results of Life Cycle Forecasting

This section contains the results of the cell phone case study
to forecast obsolescence by using the LCML framework. First,
the results of 2/3 training set and 1/3 test set are shown and
discussed. Similar to the ORML section, the model accuracy
is examined as the training size changes, and the speed of each
algorithm is assessed. Finally, each algorithm is ranked based
on the following four characteristics: accuracy, evaluation
speed, interpretability, and maintainability/flexibility.

The LCML framework predicts the date when the prod-
uct/component will become obsolete. Since the output is a
numeric rather than a binary classifier, the results cannot
be easily presented in a confusion matrix. For this reason,
the actual obsolescence dates versus the predicted obsoles-
cence dates were plotted to visually represent the accuracy

Fig. 6. Actual versus predicted end of life using neural networks and LCML.

Fig. 7. Actual versus predicted end of life using SVM and LCML.

of each model. A dashed line at 45° was plotted to show a
prefect one-to-one prediction rate. Unlike ORML, to assess
the model accuracy, the percentage correct cannot be used
to gauge model success. For the LCML framework, mean
square error (MSE) will be used to determine accuracy
as follows:

MSE = 1

n

n∑

i=1

(Ŷi − Yi )
2

where n is the number of predictions made, Ŷ is the predicted
obsolescence date, and Y is the actual obsolescence date. The
lower MSE indicates that the predicted and actual values are
closer, i.e., the model has a higher accuracy.

One big challenge of the LCML section of the case study
was the lack of obsolescence dates available through our Web
scraping data source. Users of the cell phone Web forum
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TABLE VII

AVERAGE MSE OF PREDICTIONS BY TRAINING SIZE FOR LCML

Fig. 8. Actual versus predicted end of life using RF and LCML.

commonly updated cell phone specifications and whether the
phone was procurable or discontinued, but rarely listed an
explicit date of obsolescence. For this reason, substantially
less data was available for the LCML case study.

The first algorithm tested with the LCML framework was
ANN. The neural networks require a large amount of data to
create accurate prediction models. Since the LCML data set
was smaller, the neural network was unable to create a model.
If no model is created, then the algorithm defaults to taking
an average of the training set and always applying the average
for all predictions. The results of this method are shown in
Fig. 6. The prediction model received an MSE of 4.77. The
square root of the MSE determines the average prediction
error. For neural networks, the average prediction had an error
of 2.18 years. An error that large would not be useful in the
cell phone market when the average lifespan of the product is
only 1–2 years.

The next algorithm applied was SVM. In contrast to neural
networks, SVM utilized a smaller data set and created an
accurate prediction model (Fig. 7). In Fig. 7, the solid line
is the line of best fit of the actual versus predicted end of
life. The best-fit line and the dashed prefect prediction line
are fairly similar. The MSE of the model is 0.36 and is much
more accurate than the MSE of 4.77 for neural networks.

The last algorithm testing the LCML framework was RF.
RF, similar to SVM, constructed an accurate obsolescence
date prediction model. The model had a 0.52 MSE. The
slightly higher model error rate can be seen when comparing
Figs. 7 and 8. SVM was capable of predicting closer to the
dashed or prefect prediction line.

An analysis of how changing the training set size affects
the prediction model’s accuracy was conducted with results

Fig. 9. Overall average evaluation speed by the training data set fraction for
LCML.

TABLE VIII

SUMMARY OF MODEL PREFERENCE RANKING FOR LCML

displayed in Table VII. The model was created with the
training set and then tested on the training, testing, and overall
data sets. Each was conducted ten times, and the MSE was
averaged. For neural networks, the MSE remained constant
throughout training size changes. This was largely due to the
model only using the average obsolescence date to predict
the obsolescence dates in other predictions. RF was a steady
decrease in model error as the training sizes increased, while
SVM had a more consistently low model error.

The times to create each model were recorded and plotted
in Fig. 9. Neural networks took nearly no time to average
the dates in the training set. SVM was slightly slower than
neural networks, but forecasted the obsolescence date with a
far greater accuracy. RF was third and was almost eight times
slower than SVM.

The last step in the algorithm analysis was to rank the
algorithms by the four key characteristics outlined previously
in this paper (Table VIII). Although RF was rated higher in
both nonperformance-based characteristics, SVM performed
much better on accuracy and speed. For these reasons, SVM
is the most appropriate algorithm for forecasting obsolescence
dates using LCML in the cell phone market.

V. LIMITATIONS

Like other obsolescence forecasting frameworks, LCML and
ORML have limitations and problems that may compromise
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the validity of the estimations. This section addresses these
problems and limitations and provides greater insight into the
frameworks.

The first problem can arise from the start, during data
collection. The data must be both fairly reliable and up to
date. As demonstrated in the case study, the data do not
need to be complete, but the more complete the data are, the
more accurate the prediction is. Another important part of the
data formatting process is variable selection and creation.
The correct variables can easily capture the change in the
market and can indicate when parts or elements are becoming
obsolete. However, these variables might not always be a
simple measure of memory, screen resolutions, or another
metric. For example, a variable may need to be created to
denote the highest, medium, and lowest memory levels of a
phone. Apple, Inc., usually ends production of the highest and
medium versions of a phone, but still produces the lowest
memory version of the prior model phone to capture the
market of people looking for a cheap iPhone. The size of
memory in the lowest memory version of the iPhone has
changed over time, and using only phone memory would not
capture this trend in the predictive model.

With the diversity of industry where obsolescence is present
and these frameworks can be used, there will be no uniform
indicator between industries. A good metric to measure obso-
lescence for flash drives is probably memory. However, for
cell phones, the features like thread text messaging and screen
resolution are more useful than memory. Furthermore, good
metrics can change over time. When cell phones were first
invented, connectivity was one of the most important factors
and little emphasis was on features. Now connectivity is given
and features determine phone obsolescence.

Another problem with obsolescence forecasting frameworks
is finding acceptable prediction accuracies from industry to
industry. An industry like transistors, with exponential change
such as that described by Moore’s law, would likely be
predicted more accurately than the cell phone market due to
the complexity of the products and different marketing and
pricing aspects.

The last problem is the one that plagues all machine learning
and statistical models. If the data used to build the model do
not represent the current real world, the model will not be
effective. In obsolescence, there is an extremely high chance
of this occurring due to rapid innovation or invention. When
Apple released the first iPhone, it was the first in many
categories and because of that, it accelerated the obsolescence
of many of the phones in the current market. A machine
learning or statistical obsolescence model at the time built
with past obsolescence data would not predict the jump in
technology this innovation would cause. This means that
the obsolescence forecasting frameworks introduced in this
paper and all current obsolescence models cannot predict large
jumps in innovation, but are better suited to track steady
improvements in an industry.

VI. CONCLUSION

The case study demonstrated the power of the ORML by
correctly identifying active and obsolete cell phones with

an accuracy as high as 98.3%. RF was selected as the
best algorithm for the ORML framework in the cell phone
market based on model accuracy, speed, interpretability, and
maintainability/flexibility. The second half of the case study
showed the accuracy of the LCML framework and showed that
cell phones’ obsolescence dates can be predicted within a few
months of the actual obsolescence date. The best algorithm
for LCML in the cell phone market was SVM based on the
four key characteristics named above.

One of the contributions of this paper is introducing the
two category types of obsolescence forecasting: obsolescence
risk and life cycle. Each method was examined for its
ability to scale using the three characteristics: requiring sales
data for all products in each component’s market, human
inputs for each part, and capability to handle multifeature
products/components. Machine learning was introduced as a
technique employed to utilize knowledge in large data sets
and help automate complex systems. This made machine
learning a prime candidate for solving the problem of scaling
obsolescence forecasting models to industries’ needs. The first
machine learning framework introduced was ORML, and this
provided a risk index of each product being active or obsolete.
The second machine learning framework was LCML, and this
framework provided an estimate of the lifespan of the product.
A case study using ORML and LCML was demonstrated
using cell phones and showed a high level of accuracy of
these frameworks. Then the limitations of applying these
frameworks to current obsolescence forecasting systems were
discussed to better understand the implications and potential
causes for inaccuracy.

One additional way the ORML and LCML frameworks
are unique, when compared to current methods in the liter-
ature and commercial software, is the straightforward switch
between predicting obsolescence risk and life cycle. Since both
models utilize the same inputs, the only change needed to
switch between the two methods is to change the output in the
training set during model creation. This simple characteristic
of the ORML and LCML makes it one of the most adaptive
obsolescence forecasting frameworks.

With obsolescence affecting almost all industries, reducing
the cost of impact would save millions of dollars annually. The
easiest way to reduce the impact is by involving obsolescence
mitigation planning in earlier phases of design and supply
chain management. This shift from a reactionary approach to
a proactive approach would only be possible through more
accurate obsolescence forecasting that can scale to industries’
needs. This paper establishes machine learning as a capable
technique to meet industries’ large-scale needs while maintain-
ing an extremely high accuracy for predicting obsolescence.

In the future, the methods and frameworks presented in this
paper will be applied to additional case studies. These addi-
tional studies are likely to demonstrate further that machine
learning is a highly effective solution to obsolescence fore-
casting. Additional investigations will be carried out to utilize
obsolescence risk and life cycle predictions to aid practitioners
in transitioning from reactive to proactive approaches. To scale
the ORML and LCML frameworks, integration with large
component information databases, like SiliconExpert, IHS,
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Total Parts Plus, AVCOM, and QTEC Solutions, will be
needed to allow users to predict obsolescence risk and life
cycles over millions of parts in seconds. Examples of cost
analysis tools built on top of these prediction models will
be explored where bills of materials could be submitted and
the risk levels of each component could be calculated. These
individual risk levels could be combined to show overall risk
levels of different designs. The overall risk levels could be
used in the early design stage and even in redesigns to help
choose the best design to minimize the impact of obsolescence
through the product’s life cycle. Life cycle forecasting could
also be used to help make lifetime buy or last buy orders
more accurate by better understanding when the products will
no longer be procurable.
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